
M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 1

 K SUDHAKAR Unit-2

UNIT –II
(ASSEMBLY LANGUAGE PROGRAMMING)

Syllabus: Assembly language programs involving logical, branch and call instructions, sorting, evaluation of

arithmetic expressions, string manipulation.

 INTRODUCTION TO PROGRAMMING THE 8086

Programming Languages: To run a program, a microcomputer must have the program stored in binary form in

successive memory locations. There are three language levels that can be used to write a program for a

microcomputer.

1. Machine Language

2. Assembly Language

3. High-level Languages

Machine Language: You can write programs as simply a sequence of the binary codes for the instructions you want

the microcomputer to execute. This binary form of the program is referred to as machine language because it is the

form required by the machine. However, it is very difficult, not possible, for a programmer to memorize the

thousands of binary instruction codes for a microprocessor. Also, it is very easy for an error to occur when working

with long series of 1’s and 0’s. Using hexadecimal representation for the binary codes might help some, but there are

still thousands of instruction codes to cope with.

Assembly Language: To make programming easier, many programmers write programs in assembly language. They

then translate the assembly language program to machine language so that it can be loaded into memory and run.

Assembly language uses 2, 3, or 4- letter mnemonics to represent each instruction type. A mnemonic is advice to help

you remember something. The letters in an assembly language mnemonic are usually initials or shortened form of the

English word(s) for the operation performed by the instruction. For example, the mnemonic for addition is ADD, the

mnemonic for subtraction is SUB and the mnemonic for the instruction to copy data from one location to another is

MOV. Assembly language statements are usually written in a standard form that has four fields, as shown in fig.

below.

LABEL
FIELD

OPCODE/MNEMONIC
FIELD

OPERAND
FIELD

COMMENT
FIELD

NEXT: ADD AL,07H ;Add immediate number 07H to
the contents of AL register

Fig. Assembly Language statement format.

 The first field in an assembly language statement is the Label field. A label is a symbol or group of symbols

used to represent an address which is not specially known at the time the statement is written. Labels are usually

followed by a colon.

 The opcode field of the instruction contains the mnemonic for the instruction to be performed. Instruction

mnemonics are sometimes called operation codes or opcodes.

 The operand field of the statement contains the data, the memory address. The port address, or the name of

the register on which the instruction is to be performed. Operand is just another name for the data item(s) acted on

by the instruction. In the above example there are two operands, AL and 07H, specified in the operand field. AL

represents the AL register, and 07H represents the number 07H. This assembly language statement thus says, “Add

the number 07H to the contents of the AL register.” By Intel convention, the result of the addition will be put in the

register or the memory location specified before the comma in the operand field. For the example, the result will be

left in the register AL.

M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 2

 K SUDHAKAR Unit-2

 The final field in an assembly language statement is comment field, which starts with a semicolon. Comments

do not become the part of the machine language program, but they are very important.

High-level Language: Another way of writing a program for a microcomputer is with a high-level language, such as

BASIC, Pascal, or C. These language use program statements which are even more English-like than those of assembly

language. Each high level statement may represent many machine code instructions. An interpreter or a compiler

program is used to translate higher-level language statements to machine codes. Programs can usually be written

faster in high level languages than in assembly language because a high –level language work with bigger building

blocks. However, programs written in a high –level language and interpreted or compiled almost always execute

more slowly and require more memory than the same program written in assembly language.

 Programs that involve a lot of hardware control, such as robots and factory control systems, or programs that

must run as quickly as possible are usually best written assembly language. Complex data processing programs that

manipulate massive amounts of data, such as insurance company records, are usually best written in a high-level

language.

 PROGRAM DEVELOPMENT STEPS

 Developing a program however requires more than just writing down series of instructions. When you write a

computer program, it is good idea to start by developing a detailed plan or outline for the entire program. You should

never start writing an assembly language program by just writing down instructions!

 The program development steps are:

1. Defining a Problem

2. Representing program operations

3. Finding the right instruction

4. Writing a program

 ASSEMBLY LANGUAGE PROGRAM DEVELOPMENT TOOLS

For all but the very simplest assembly language programs, you will probably want to use some type of microcomputer

development system and program development tools to make your work easier. Most of the program development

tools are programs which you run to perform some function on the program you are writing.

Program development tools are:

1. Editor

2. Assembler

3. Linker

4. Locator

5. Debugger

6. Emulator

Editor: An editor is a program which allows you to create a file containing the assembly language statements for your

program. When you have typed in your entire program, you then save the file on a hard disk. This file is called source

file. The next step is to process the source file with an assembler. If you are going to use the TASM or MASM

assembler, you should give your source file name the extension .ASM.

Assembler: An assembler is programming tool which is used to translate the assembly language mnemonics for

instructions to the corresponding binary codes. The assembler generates two files. The first file, called the object file,

is given the extension .OBJ. The object file contains the binary codes for the instructions and information about the

addresses of the instructions. After further processing the contents of this file will be loaded into memory and run.

The second file generated by the assembler is called the assembler list file and is given the extension .LST.

M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 3

 K SUDHAKAR Unit-2

Linker: The linker is program used to join several object files into one large object file. The linkers which come with

the TASM or MASM assemblers produce link files with the .EXE extension.

Locator: A locator is a program used to assign the specific addresses of where the segments of object code are to be

loaded into memory.

Debugger: If your program requires no external hardware or requires only hardware accessible directly from your

microcomputer, then you can use debugger to run and debug your program. A debugger is a program which allows

you to load your object code program into system memory, execute the program, and troubleshoot or’ debug’ it.

Emulator: Another way to run your program is with an emulator. An emulator is a mixture of hardware and software.

It is usually used to test and debug the hardware and software of an external system.

 ASSEMBLY LANGUAGE PROGRAMS

Simple programs

1. Write an ALP in 8086 to perform an addition of two 8-bit numbers.

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
START: MOV SI, 3000H
 MOV AL, [SI]
 INC SI
 MOV BL, [SI]
 ADD AL, BL
 INT 03H
CODE ENDS
 END

 Using data segment declaration

 ASSUME CS: CODE, DS: DATA
 DATA SEGMENT
 N1 DB 08H
 N2 DB 02H
 DATA ENDS
 ORG 3000H
 CODE SEGMENT
 MOV AX, DATA
 MOV DS, AX
 MOV AL, N1
 MOV BL, N2
 ADD AL, BL
 INT 03H
 CODE ENDS
 END

2. Write an ALP in 8086 to perform subtraction of two 8-bit numbers.

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT

M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 4

 K SUDHAKAR Unit-2

 MOV SI, 3000H
 MOV AL, [SI]
 INC SI
 MOV BL, [SI]
 SUB AL, BL
 INT 03H
CODE ENDS
 END

3. Write an ALP in 8086 to perform multiplication of two 8-bit numbers.

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
 MOV SI, 3000H
 MOV AL, [SI]
 INC SI
 MOV BL, [SI]
 MUL BL
 INT 03H
CODE ENDS
 END

4. Write an ALP in 8086 to perform 16-bit by 8-bit division.

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
 MOV SI, 3000H
 MOV AL, [SI]
 INC SI
 MOV AH, [SI]
 INC SI
 MOV BL, [SI]
 DIV BL
 INT 03H
CODE ENDS
 END

5. Write an ALP in 8086 to perform an addition of two 16-bit numbers.

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
START: MOV SI, 3000H
 MOV AX, [SI]
 INC SI
 INC SI
 MOV BX, [SI]
 ADD AX, BX
 INT 03H
CODE ENDS
 END

6. Write an ALP in 8086 to perform subtraction of two 16-bit numbers.

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
START: MOV SI, 3000H

M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 5

 K SUDHAKAR Unit-2

 MOV AX, [SI]
 INC SI
 INC SI
 MOV BX, [SI]
 SUB AX, BX
 INT 03H
CODE ENDS
 END

7. Write an ALP in 8086 to perform multiplication of two 16-bit numbers.

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
START: MOV SI, 3000H
 MOV AX, [SI]
 INC SI
 INC SI
 MOV BX, [SI]
 MUL BX
 INT 03H
CODE ENDS
 END

8. Write an ALP in 8086 to perform 32-bit by 16-bit division.
 ASSUME CS: CODE

CODE SEGMENT
START: MOV SI, 3000H
 MOV AX, [SI]
 INC SI
 INC SI
 MOV DX, [SI]
 INC SI
 INC SI
 MOV BX, [SI]
 DIV BX
 INT 03H
CODE ENDS
 END

9. Write an ALP in 8086 to perform BCD addition of two 16-bit numbers.

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
START: MOV SI, 3000H
 MOV AX, [SI]
 INC SI
 INC SI
 MOV BX, [SI]
 ADD AX, BX
 DAA
 INT 03H
CODE ENDS
 END

M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 6

 K SUDHAKAR Unit-2

10. Write an ALP in 8086 to perform BCD subtraction of two 16-bit numbers.

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
START: MOV SI, 3000H
 MOV AX, [SI]
 INC SI
 INC SI
 MOV BX, [SI]
 SUB AX, BX
 DAS
 INT 03H
CODE ENDS
 END

Programs involving Logical, Branch and Call instructions

11. Write an ALP in 8086 to perform series addition of N 16-bit numbers.

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
START: MOV SI, 3000H
 MOV CL, [SI]
 INC SI
 MOV AX, [SI]
 DEC CL
UP: INC SI
 INC SI
 MOV BX, [SI]
 ADC AX, BX
 DEC CL
 JNZ UP
 INT 03H
CODE ENDS
 END

12. Write an ALP in 8086 to perform subtraction of N 16-bit numbers.

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
START: MOV SI, 3000H
 MOV CL, [SI]
 INC SI
 MOV AX, [SI]
 DEC CL
UP: INC SI
 INC SI
 MOV BX, [SI]
 SBB AX, BX
 LOOP UP
 INT 03H
CODE ENDS
 END

M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 7

 K SUDHAKAR Unit-2

13. Write an ALP in 8086 to perform multiplication of given two numbers using
 1. MUL instruction
 2. Repeated addition method
 1. MUL instruction

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
 MOV SI, 3000H
 MOV AL, [SI]
 INC SI
 MOV BL, [SI]
 MUL BL
 INT 03H
CODE ENDS
 END

 2. Repeated addition method

 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
 MOV SI, 3000H
 MOV AX, 0000H
 MOV CL, [SI]
 INC SI
UP: ADC AL, [SI]
 LOOP UP
 INT 03H
CODE ENDS
 END

14. Write an ALP in 8086 to transfer a block of N bytes from one location to another location.
 ASSUME CS: CODE
 ORG 4000H

CODE SEGMENT
 MOV SI, 2000H
 MOV DI, 3000H
 MOV CL, [SI]
 UP: INC SI
 MOV AL, [SI]
 MOV [DI], AL
 INC DI
 LOOP UP
 INT 03H
 CODE ENDS
 END
15. Write an ALP in 8086 to exchange a block of N bytes between source location and destination.
 ASSUME CS: CODE
 ORG 4000H

CODE SEGMENT
 MOV SI, 2000H
 MOV DI, 3000H
 MOV CL, [SI]
 UP: INC SI
 MOV AL, [SI]

M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 8

 K SUDHAKAR Unit-2

 MOV BL, [DI]
 XCHG AL, BL
 MOV [SI], AL
 MOV [DI], BL
 INC DI
 LOOP UP
 INT 03H
 CODE ENDS
 END
16. Write an ALP in 8086 to find the maximum number from the given array of N numbers.
 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
 MOV SI, 3000H
 MOV CL, [SI]
 INC SI
 MOV AX, [SI]
 DEC CL

UP: INC SI
 INC SI
 CMP AX, [SI]
 JA DOWN
 MOV AX, BX
 DOWN: LOOP UP
 INT 03H
 CODE ENDS
 END

17. Write an ALP in 8086 to find the minimum number from the given array of N numbers.
 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
 MOV SI, 3000H
 MOV CL, [SI]
 INC SI
 MOV AX, [SI]
 DEC CL

UP: INC SI
 INC SI
 CMP AX, [SI]
 JB DOWN
 MOV AX, BX
 DOWN: LOOP UP
 INT 03H
 CODE ENDS
 END

18. Write an ALP in 8086 to count no. of even and odd numbers from the given array.
 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
 MOV SI, 3000H
 MOV CL, [SI]
 MOV BX, 0000H
 MOV DX, 0000H

M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 9

 K SUDHAKAR Unit-2

 MOV AX, 0000H
 UP: INC SI
 MOV AL, [SI]
 ROR AL, 01H
 JC ODD
 INC BX
 JMP DOWN
 ODD: INC DX
 DOWN: LOOP UP
 INT 03H
 CODE ENDS
 END

19. Write an ALP in 8086 to find no. of positive and negative numbers from the given array.
 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
 MOV BX, 0000H
 MOV DX, 0000H
 MOV AX, 0000H

MOV SI, 3000H
 MOV CL, [SI]
 UP: INC SI
 MOV AL, [SI]
 ROL AL, 01H
 JC NEG
 INC BX
 JMP DOWN
 NEG: INC DX
 DOWN: LOOP UP
 INT 03H
 CODE ENDS
 END

20. Write an ALP in 8086 to count no. of 1’s and 0’s in a given 16-bit number.
 ASSUME CS: CODE
 ORG 2000H

CODE SEGMENT
 XOR AX, AX
 XOR BX, BX
 XOR DX, DX
 MOV SI, 3000H
 MOV CL, 10H
 MOV AX, [SI]
 UP: ROR AX, 01H
 JC ONE
 INC BX
 JMP DOWN
 ONE: INC DX
 DOWN: LOOP UP
 INT 03H
 CODE ENDS
 END

M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 10

 K SUDHAKAR Unit-2

21. Write a Recursive program in 8086 to find the sum of first N integers.
 ASSUME CS: CODE
 ORG 5000H
 CODE SEGMENT
 MOV SI, 3000H
 MOV CX, [SI]
 CALL ADD
 INT 03H
 CODE ENDS
 END
 ADD: PROC NEAR
 CMP CX, 0000H
 JE EXIT
 ADD AX, CX
 DEC CX
 CALL ADD
 EXIT: RET
 ENDP

Evaluation of arithmetic expressions

22. Write an ALP in 8086 to evaluate the following expressions.

 2.

 ASSUME CS: CODE
 ORG 4000H

CODE SEGMENT
 MOV SI, 3000H

 MOV AL, [SI]
 INC SI
 MOV BL, [SI]
 MUL BL
 MOV DX, AX
 MOV AH, 00H
 INC SI
 MOV AL, [SI]
 INC SI
 MOV BL, [SI]
 DIV BL
 MOV AH, 00H
 SUB DX, AX
 INC SI
 MOV AL, [SI]
 ADD AX, DX
 INT 03H
 CODE ENDS
 END

 2.

 ASSUME CS: CODE
 ORG 4000H

CODE SEGMENT
 MOV SI, 3000H

M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 11

 K SUDHAKAR Unit-2

 MOV DI, 5000H
 MOV CL, [SI]
 MOV DX, 0000H
UP: INC SI
 MOV AL, [SI]
 MUL [DI]
 ADD DX, AX
 INC DI
 LOOP UP
 INT 03H
CODE ENDS
 END

Sorting

23. Write an ALP in 8086 to arrange a given array of N bytes in ascending order.

 ASSUME CS: CODE
 ORG 4000H
 CODE SEGMENT
 MOV SI, 3000H
 MOV CL, [SI]
 DEC CL
 UP1: MOV CH, [SI]
 DEC CH
 INC SI
 UP: MOV AL, [SI]
 INC SI
 CMP AL, [SI]
 JL OUT
 XCHG AL, [SI]
 XCHG AL, [SI-1]
 OUT: DEC CH
 JNZ UP
 DEC CL
 JNZ UP1
 INT 03H
 CODE ENDS
 END
24. Write an ALP in 8086 to arrange a given array of N bytes in descending order.

 ASSUME CS: CODE
 ORG 4000H
 CODE SEGMENT
 MOV SI, 3000H
 MOV CL, [SI]
 DEC CL
 UP1: MOV CH, [SI]
 DEC CH
 INC SI
 UP: MOV AL, [SI]
 INC SI
 CMP AL, [SI]
 JG OUT
 XCHG AL, [SI]

M i c r o p r o c e s s o r s a n d M i c r o c o n t r o l l e r s P a g e | 12

 K SUDHAKAR Unit-2

 XCHG AL, [SI-1]
 OUT: DEC CH
 JNZ UP
 DEC CL
 JNZ UP1
 INT 03H
 CODE ENDS
 END

Strings

25. Write an ALP in 8086 to insert a byte in to a string.

 ASSUME CS: CODE
 ORG 5000H
 CODE SEGMENT
 MOV CX, 0000H
 MOV SI, 3000H
 MOV CL, [SI]
 ADD SI, CX
 MOV DI, SI
 INC DI
 SUB CL, position
 INC CL
 STD
 REP MOVSB
 MOV [DI], Byte
 INT 03H
 CODE ENDS
 END
26. Write an ALP in 8086 to check whether the given string is palindrome or not.

 ASSUME CS: CODE
 ORG 5000H
 CODE SEGMENT
 MOV CX, 0000H
 MOV SI, 3000H
 MOV CL, [SI]
 MOV DI, SI
 ADD DI, CX
 MOV AL, CL
 MOV BL, 02H
 DIV BL
 MOV CL, AL
 INC SI
 UP: CMPSB
 JNE EXIT
 INC SI
 DEC SI
 LOOP UP
 MOV AX, FFFFH
 INT 03H
 EXIT: MOV AX, 0000H
 INT 03H

